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ABSTRACT
More and more applications rely on the safe execution of code
unknown at compile-time, for example in the implementation of
web browsers and plugin systems. Furthermore, these applications
usually require some form of communication between the added
code and its embedder, and hence a communication channel must
be set up in which values are serialized and deserialized. This paper
shows that in a functional programming language we can solve
these two problems at once, if we realize that the execution of extra
code is nothing more than the deserialization of a value which
happens to be a function. To demonstrate this, we describe the
implementation of a serialization library for the language Clean,
which internally uses an interpreter to evaluate added code in
a separate, sandboxed environment. Remarkable is that despite
the conceptual asymmetry between “host” and “interpreter”, lazy
interworking must be implemented in a highly symmetric fashion,
much akin to distributed systems. The library interworks on a low
level with the native Clean program, but has been implemented
without any changes to the native runtime system. It can therefore
easily be ported to other programming languages.

We can use the same technique in the context of the web, where
we want to be able to share possibly lazy values between a server
and a client. In this case the interpreter runs in WebAssembly in
the browser and communicates seamlessly with the server, written
in Clean. We use this in the iTasks web framework to handle com-
munication and offload computations to the client to reduce stress
on the server-side. Previously, this framework cross-compiled the
Clean source code to JavaScript and used JSON for communication.
The interpreter has a more predictable and better performance, and
integration is much simpler because it interworks on a lower level
with the web server.

CCS CONCEPTS
• Software and its engineering→ Functional languages; • In-
formation systems → Browsers; • Computer systems organi-
zation→ Client-server architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IFL’19, September 25–27, 2019, Singapore, Singapore
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7562-7/19/09. . . $15.00
https://doi.org/10.1145/3412932.3412941

KEYWORDS
interpreters, functional programming, laziness, sandboxing, Web-
Assembly

ACM Reference Format:
Camil Staps, John van Groningen, and Rinus Plasmeijer. 2019. Lazy Inter-
working of Compiled and Interpreted Code for Sandboxing and Distributed
Systems. In Implementation and Application of Functional Languages (IFL
’19), September 25–27, 2019, Singapore, Singapore. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3412932.3412941

1 INTRODUCTION
The execution of untrusted code, or code that is unknown to the
executable when it is started, has become paramount in a large
number of different contexts. The most common example is the web
browser, which must run JavaScript and WebAssembly code that
can interact with the web page but should under no circumstance
crash the browser or the rendering engine.

Another use case can be found in plugin systems. We may for
example imagine a compiler which can load plugins for various
language extensions, where plugins can provide functions for trans-
forming the abstract syntax tree. In this case the plugin has to
interwork on an even more fine-grained level with the host pro-
gram, interacting closely with the same data types.

A similar need is felt in workflow systems like the iTasks frame-
work for Task-Oriented Programming [24, 25]. Applications written
in this framework center around various tasks and the workflows
that users walk through to execute them. Currently, applications
must be recompiled to add new possible workflows. However, if
we could dynamically add code to a running executable, the iTasks
server could remain online during updates.

In this paper, we shall focus on the runtime safety aims required
for plugin and workflow systems: we assume that the plugin is
trusted (which, in these contexts, can be verified using other tech-
niques, such as digital signatures), so do not need to protect against
reading sensitive data and the like, but still need to prevent it from
crashing the host program.

In many of these contexts, we furthermore want the “added
code” or the “plugin” to be able to be distributed in a platform-
independent manner: there are no different JavaScript versions
for different binary platforms, nor would one expect to have to
download a different compiler plugin on Windows than on Linux.
This complicates the matter, because it means we cannot simply
distribute machine code which can be linked dynamically.

Lastly, in a lazy functional programming language, we expect
that the interface between the host program and the added code is
lazy as well. For instance, it should in principle be possible to have
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a plugin in some system which computes an infinite list of integers,
as long as the host only requests a finite amount of them.

1.1 The solution in a nutshell
Pure functional programming languages are at least theoretically
ideally suited for the distribution of unknown code: because func-
tions are first-class citizens, the distribution of code is essentially a
special case of serialization. Hence we do not need to treat func-
tions separately (as, for instance, Java does with its remote method
invocation interface). Instead, we can design a serialization library
which automatically deserializes functions as expected.

Unfortunately, so far, implementers of serialization libraries have
taken a traditional, “data-only” approach to serialization. This can
be seen in the many JSON libraries that are available for virtually
every programming language. In a lazy language, serializing a value
to JSON can lead to an amount of work disproportionate to the
size of the value in the heap, because the value must be evaluated
first. Moreover, shared pointers are lost when serializing to such
flat formats, and serialization may not even finish when cyclic
or infinite data structures are encountered. Another approach to
serialization is to make a copy of the graph without evaluating it [8].
However, because this graph may contain references to the machine
code that is needed to further evaluate it, it can only be deserialized
by the exact same executable, or, when using symbolic addresses,
executables that already contain the relevant code [12, 20]. These
solutions, while useful in some distributed systems, are therefore
insufficient for the use cases described above.

We describe a new solution. To the outside, it looks like a seri-
alization library, with built-in support for functions. Internally, it
builds on existing functionality to copy graphs [20]. However, in
addition to the string representation of the graph, serialized expres-
sions now also contain a bytecode which can be used to evaluate it.
The serialization library includes an interpreter for this bytecode.
This way we combine the compiled code of the native host program
with the interpreted code of deserialized expressions.

Our library has the following properties. First, it is cross-platform:1
the serialized representation of a value is independent of the execu-
tion platform, and can be deserialized anywhere else, including by
executables that do not contain the source code needed to evaluate
them. Second, after deserialization, it is possible to handle serial-
ized expressions in the same way as native values, i.e., without con-
stantly using special functions to access them. Third, deserialization
of functions happens in a sandbox and cannot crash the host pro-
gram. As will become apparent, the second and third requirements
exclude each other. Both are implemented, but the programmer
must choose whether seamless integration or sandboxing is used.

Lastly, we should note that although our library requires low-
level access to the Clean heap to serialize graphs and copy nodes
between the native heap and the interpreter heap, it was not neces-
sary to change Clean’s native runtime system. We therefore believe
our implementation can easily be ported to other contexts.

1The interpreter must be available on the target platform. Since it is written in C
and only ca. 100 lines of assembly code are needed to connect native Clean with the
interpreter, new platforms are easily supported.

1.2 Web applications
We have also successfully applied our interpreter in the context of
the web. A main issue here is that the frontend and the backend of
a web application are usually written in different languages. The
frontend has to be executed in the browser, and is therefore limited
to very few languages (primarily JavaScript). For programmers it is
however much more convenient to write the entire application in
one language. For this reason there exist many frameworks that let
one compile server-side languages to JavaScript.

However, compiling functional programming languages for the
browser is difficult, because they typically rely heavily on features
like deep recursion and non-local goto’s that cannot easily be mim-
icked in browser languages. These issues can be worked around, for
example by using continuation-passing style (“trampolined code”)
and simulating a heap, which is done when Clean is compiled to
JavaScript through Sapl [10] or when Haskell is compiled to Web-
Assembly by Asterius [16]. However, each trick that is used to work
around these issues creates a bigger gap between the native run-
time system and that used in the browser. Hence, it becomes more
difficult to use the graph copying mechanism for communication
between the server and the client, and performance becomes more
and more unpredictable compared to that of native code.

Therefore we take a different approach here. We cross-compile
the interpreter used in the serialization library to WebAssembly, so
that it can be used to interpret functional programs in the browser.
Interworking is then established between the server, which runs
the native version of the executable, and the client, which interprets
the same functional language and interacts with the web page to
create an interactive web application.

1.3 Organisation
The next section describes the ABC machine, the abstract machine
that our interpreter simulates. Section 3 describes the (de)serialization
library and the interworkingwith the compiled host program. In sec-
tion 4 we describe how the same interpreter is used in the browser.
Section 5 provides benchmarks for various implementations of the
ABC interpreter. We finish by describing related work and summa-
rizing our conclusions in sections 6 and 7.

2 THE ABC MACHINE
The ABC machine [19, pp. 35–56] is an abstract imperative stack
machine designed for the execution of lazy functional programs.
The Clean compiler generates ABC code, from which actual ma-
chine code is generated. Clean’s graph rewriting semantics [26,
§1.1] are directly mirrored in the architecture of the ABC machine
in that it has a heap which contains the graph that is being rewritten.
Additionally it uses three stacks, which contain return addresses,
basic values (e.g. integers), and references to nodes in the graph.

2.1 Compilation of Clean
Each Clean function is compiled to a sequence of ABC instructions
with a number of entry points. Which entry point is used depends
on the context in which the function is called. The most basic entry
point is the strict entry: this entry point is used when the function
result is guaranteed to be needed; the arguments are passed on
the stack, and the strict arguments have been evaluated. Other
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Figure 1: The runtime memory layout of a Clean program.

entry points are used to facilitate currying and lazy evaluation.
When a function application is not guaranteed to be needed for
the outcome of the program, a thunk is created which contains the
arguments and points to the lazy entry of the function. When the
thunk needs to be evaluated, the program jumps to this entry, which
moves the arguments from the node to the stack, evaluates the strict
arguments, and proceeds to the strict entry. Afterwards the original
node is filled with the result. When a closure is applied to a new
argument and this satisfies the arity requirement for evaluation
of that node, the apply entry is used. This situation is similar to
that for the lazy entry, but in this case one or more arguments are
already on the stack and a new node is created for the result.

2.2 Concrete implementations
There are several code generators which generate actual machine
code for various common instruction sets from the intermediate
ABC code. To these target platforms, we have added an ABC inter-
preter which can execute a bytecode very close to ABC code. The
main differences with actual ABC code are a number of straightfor-
ward optimizations and the addition of specialized instructions for
frequent instruction sequences. This is needed because the ABC
language is primarily designed to be an easy compilation target
rather than an efficiently interpretable bytecode.

The implementation of the instructions in the interpreter is gen-
erated from a small DSL embedded in Clean, with views to produce
both C and WebAssembly versions. The supporting code consists
of standard bootstrap code (to parse and load the program and
print the result) and a copying garbage collector. Only standard
techniques were used to implement the interpreter; see [13] for
an overview. The C interpreter uses direct threaded code when
the compiler supports it (as is the case for GCC and Clang, but not
MSVC). TheWebAssembly interpreter uses a giant switch approach,
which is also the fallback option for the C interpreter.

The runtime layout of the heap is the same whether a program
is run natively or in the ABC interpreter. The heap contains two
types of nodes: thunks and head normal forms. For both types, the
first node points to a descriptor containing information about the
object, such as the arity and the different entry points. A thunk then
contains a contiguous block of pointers to its arguments. A head
normal form has the same structure, but is split over two memory
blocks if it has more than two arguments. This is exemplified in
Figure 1, which shows the memory layout for the expression f 37
(g 37) (x, y, z): it is a thunk with three arguments, and (g 37) a
thunk with one argument and a reserved spot. The INT descriptor
is for head normal forms (indicated with the triangle in the upper
1Here and elsewhere we use the term “closure” for unsaturated function applications.
Internally these are represented as head normal form nodes. The head refers to the
function that is to be applied when all arguments have been “curried” into it; the node
arguments are the (possibly zero) arguments that have already been bound.

right corner) with one unboxed argument; Tuple3 is a descriptor
for head normal forms with three (boxed) arguments. By reserving
three words for all thunks (as seen for g) and splitting large head
normal form nodes up (as seen for Tuple3), a thunk can always be
overwritten by a head normal form (as is done in the lazy entry
point).

3 (DE)SERIALIZATION AND INTERWORKING
Given the memory layout described above, it is easy to see how
graphs can be serialized: the graph is traversed in a depth-first man-
ner, marking visited nodes so that shared pointers remain shared
after serialization. This technique is commonly referred to as graph
packing [8, p. 41 and references therein]. It is also implemented for
Clean under the name GraphCopy [20], with a wrapper, GraphCopy-
with-names, that translates descriptor addresses to descriptor names.
This wrapper can be used to work around the well-known issue that
graphs serialized this way can normally only be deserialized by the
same executable, because they contain hard-coded addresses (e.g.
[12, p. 126]), but does not allow one to extend program functionality
yet: all code required to evaluate the expression must be present in
the deserializing executable.

The new serialization library is essentially a wrapper around
GraphCopy-with-names. A serialized expression now contains the
graph, the descriptor names, and the bytecode. The necessary byte-
code is extracted using reachability analysis starting from the de-
scriptors that are used in the graph.

To deserialize an expression using the ABC interpreter, the fol-
lowing steps are performed. First, new heap and stack spaces are
allocated, and the bytecode is parsed and loaded into memory. The
symbol table of the bytecode program ismatched against the symbol
table of the executable, to facilitate interworking later on (see sec-
tion 3.2). Second, the descriptor names in the serialized expression
are replaced with the actual addresses of the instantiated bytecode
program. After this, the graph can be unpacked with the straightfor-
ward inverse operation of the graph packing algorithm described
above. The interpreter can now start to evaluate the graph.

3.1 Interworking with compiled code
To make sure deserialization is lazy, the interpreter does not evalu-
ate the whole graph to a normal form at once. Instead, it evaluates
it to head normal form. This head normal form is then copied to
the native Clean program, called the host.

Two representative stages of this process are shown in Figure 2,
where the well-known function map is interpreted and applied
to two native arguments. The native heap is shown on the left
of these figures; the interpreter’s heap on the right. Figure 2(a)
shows the initial state in which a map closure has been created
in the interpreter and an indirection has been made in the host.
Figure 2(b) reflects the state after the function is applied to some
native operator f and a native list (Cons x xs), and after the first
Cons node of the result has been copied to the native heap. This
is the top left Cons node; the other Cons node is the head of the
original list (which can now be garbage collected if the host has no
other references to it). The first result element (f x) is not shown
for brevity. The tail of the resulting list is a reference to a map
thunk in the interpreter. The IEnv nodes are required arguments for
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Figure 2: Snapshots of the heaps when interpretingmap.

indirections from the host to the interpreter; this will be discussed
below. We now describe each case of the copying process in detail.

Node arguments that are unboxed values or are in head normal
form (and are not closures) are copied directly. This could for ex-
ample be the case for the first argument of the result Cons node in
Figure 2(b) (the evaluation of f x), if we are dealing with a head-
strict list. Although theoretically this can lead to large values being
copied even though they are not needed in the host (because they
just happen to have been evaluated in the interpreter), this did
not appear to be a problem in practice. We expect that creating
indirections for nodes that are already in head normal form would
lead to additional overhead, so we have decided to copy these nodes
directly instead. However, we currently do not have data to confirm
or reject this hypothesis.

It is in principle possible to also copy thunks for which the
relevant code is present in the host program (for example, the first
argument of the result Cons node in case of a lazy list). However,
this would impose a security risk: if this lazy value causes a runtime
fault, this must be caught by the interpreter, so the lazy value cannot
be copied to the host.2 Instead, an indirection thunk is created in
the host for every thunk that is encountered, as can be seen in the
indir node on the host side in Figure 2(b). This indirection node
references the node in the interpreter heap. When evaluated, the
interpreter is used to evaluate the node (with the lazy entry point),
after which a new copy cycle begins.

During the copying of a node, visited nodes are marked, so that
cyclical data structures can be copied without problems and shared
pointers remain intact. However, this matching between interpreter
and host nodes is not retained after the copy cycle has finished
(this would require a significant amount of extra work to keep the
matching up to date during garbage collection).

So far we have covered situations inwhich a serialized expression
copied to the host may not be fully evaluated but will still eventually
be rewritten to a graph that solely consists of data. It is however also
2For the same reason, interpreter instances do not share common libraries with each
other or with the host.

possible that the interpreted expression contains closures. These
can then be applied to native arguments. As with thunks, we cannot
copy these to the host because of security risks and because the
relevant evaluation code may not be present in the host. Instead,
also in this case an indirection is created in the host. This is the
case shown in Figure 2(a). This indirection is a closure which still
requires as many arguments as the underlying interpreter node;
hence, indir_2 is used here instead of indir. The arguments are
therefore collected in the native Clean program; only when enough
arguments are present they are copied to the interpreter and is the
function evaluated. This is done using the apply entry of the node.

In the case of closures in deserialized expressions it is therefore
necessary to copy values from the host to the interpreter. This
works in much the same way as in the other direction. Hence the
interpreter heap may also contain indirections to the host heap,
as is seen in Figure 2(b). The indir node here references the tail
of the original list to which map is applied; it is a thunk, because
xs has not been evaluated in the host yet. The indir_1 node refers
to the operator argument; it is a closure which still requires one
argument, mirroring the node in the host.

As can be seen, the relationship is much more symmetrical than
the term “host” suggests, and indirections in both directions are
required to facilitate laziness. One important difference is, however,
that there may be several interpreters while there is always only
one host. Hence, indirections from the host to the interpreter have
an extra argument, the interpretation environment (IEnv in Figure 2),
which contains such information as the locations of the bytecode,
heap and stack of the interpreter. These are needed to start the
interpreter to evaluate the referenced node. Indirections from the
interpreter to the host do not need this extra argument.

It is possible that the host applies an interpreted function to a
value that is deserialized using another interpreter. This can be-
come quite complex, if there are multiple interpreters and higher
order functions involved. This case is automatically caught by the
setup presented here, but not very efficiently: indirections from one
interpreter to another will in fact be indirections to a host indirec-
tion to that other interpreter. This can in principle be optimized by
allowing interpreter indirections in the interpreter itself.

3.2 Translation of descriptors
The host program and the interpreter do not share their descriptors,
because the descriptor layout is different for different binary plat-
forms and contains references to program code.3 The consequence
is that descriptor addresses must be translated when copying a
node. To do this efficiently, the descriptor blocks in the interpreter
are expanded with an extra field which is a pointer to the corre-
sponding descriptor in the host. Hence, translation of the descriptor
from the interpreter to the host can be done in constant time.

Because a host descriptor may have to be mapped to several
interpreter descriptors (when multiple expressions are being dese-
rialized simultaneously), we cannot translate host descriptors to
interpreter descriptors in the same way. Instead, each interpreter
keeps a separate binary search tree for this purpose.
3To be precise, descriptors contain pointers to entry points to evaluate the node or
add arguments to a closure. Depending on the type of node other information can be
included as well, e.g. the arity (for garbage collection), the name (of constructors, for
printing), the types of unboxed values (for printing), etc.



Lazy Interworking of Compiled and Interpreted Code for Sandboxing and Distributed Systems IFL’19, September 25–27, 2019, Singapore, Singapore

It is possible that a descriptor of the interpreter does not exist
in the host or vice versa. This can for example occur when the
interpreted expression uses types unknown to the host or when the
interpreted expression is a polymorphic function and is called with
a native argument of a type unknown to the interpreter. In this
case we allocate a new block of memory and copy the descriptor.
This is needed because the garbage collector uses information from
the descriptors. Since only fully saturated head normal forms are
copied, we do not need all elements from the copied descriptor.
For instance, descriptors contain a curry table which is used to
curry new arguments into closures. This curry table is not copied,
because it will never be used. Effectively this means that we only
need to copy data in a descriptor, not references to code.

3.3 Impact on garbage collection
As described above, both the host heap and the interpreter heap(s)
contain indirections to each other. When garbage collection runs,
these indirections must be taken into account so that, for example,
interpreter nodes that are referenced from the host (but not from the
interpreter heap itself) are kept in memory. Furthermore, references
in both directions must be updated when a garbage collector moves
objects. As has been mentioned above, the interworking setup is
much more symmetric than one may expect, and hence ideas to
solve this problem were taken from implementations of distributed
systems [18, pp. 102–111]. Nevertheless we are able to present a
solution that relies on only one special feature of the native runtime
system. This feature can be emulated in other runtime systems with
more common features (see note 4).

To retain host nodes referenced from the interpreter, the inter-
pretation environment (in the host) contains an array of nodes
shared with the interpreter. Because this array lives in the host, the
references are updated by the host garbage collector — and because
the interpretation environment is referenced from every indirection
from the host to the interpreter, the array is kept alive as long as
necessary. An indirection from the interpreter to the host is simply
an index into this array and therefore does not need to be updated
after garbage collection has taken place in the host. When garbage
collection runs in the interpreter, the array is cleaned up.

To retain interpreter nodes referenced from the host, all refer-
ences from the host to the interpreter are kept in a weakly linked
list in the host. The Clean garbage collector ensures that values in
the linked list that are not reachable from elsewhere in the heap are
removed from the list.4 The interpreter’s garbage collector makes
sure that objects referenced from the weakly linked list are kept in
memory and have their references updated.

Finally, the interpretation environment is wrapped in a finalizer,
so that a C function is called when it is removed by the garbage
collector. This C function then frees all related memory (program
code, heap, stack, and descriptor matching); only descriptors that
have been copied to the host remain (because they may still be in
use in the host).
4This is the only uncommon feature of the Clean runtime system that we use. A similar
solution can be implemented in runtime systems with hooks at strategic places in the
garbage collector, to ensure that the references from the weakly linked list are not
considered to determine whether an object can be freed, but are updated when objects
are moved. This solution can also be emulated in runtime systems with support for
finalizers (the ability to execute code after a referenced object has been removed from
memory), but with a larger memory footprint.

3.4 Sandboxed deserialization
While it is possible for the ABC interpreter to implement the ABC
instructions to deal with file I/O, pointers, and the C foreign function
interface, this has not been done so far. The reason behind this is
that interpreted programs should in principle not have side effects,
because deserialization is a pure function. Should a host program
wish to offer interpreted programs access to such features, it can
do so through an ad hoc interface.

However, interpreted programs can still crash, for example by
running out of heap or stack space or dividing by zero. In some
contexts it is required that expressions are interpreted in such a
way that it cannot crash the host program. This is for example the
case in plugin systems where the plugins would be interpreted.
However, this turns out to be tedious in a lazy language that is
furthermore strongly typed and must therefore reflect “exceptions”
(like when interpretation failed) in types.

3.4.1 Safety and laziness. Where the type of our deserialization
function was previously simply (String→ a),5 it would now have
to be (String → MaybeDeserialized a), with MaybeDeserialized
recognizing different kinds of exceptions:
:: MaybeDeserialized a

= HeapFull | StackOverflow | IllegalInstruction / / various exceptions
| Ok a / / success

However, it cannot be decided after the first interpretation step (i.e.,
when a head normal form has been reached) which constructor
must be created. If no fault was detected, we still cannot create an
(Ok val), because val may contain indirections to the interpreter,
which, when evaluated, may cause a fault.

For evaluations further down the evaluation tree we even cannot
wrap the result in a type likeMaybeDeserialized. Suppose we are
deserializing a value of type List Int:
:: List a = Cons a (List a) | Nil

Because both arguments of the Cons constructor may trigger a
fault, a naive deserializer would now generate values like (Ok (Cons
(Ok 1) (Ok Nil))), which are ill-typed. Indeed, faults further down
the evaluation tree must be reflected in a top-level wrapper type.
This requires fully evaluating the expression to a normal form
to decide which constructor must be used. We have nevertheless
implemented this functionality; the programmer can now choose
between using a lazy deserialization variant which may crash the
host program, and a hyperstrict variant which catches faults. Our
library therefore provides two functions: deserialize :: String→ a
and safe_deserialize :: String→ MaybeDeserialized a.

With GHC’s exceptions (which can be thrown in pure expres-
sions and caught in the IO monad) it would not be necessary to
reflect possible failure in the type, and it may be possible to combine
safety and laziness.

3.4.2 Function types. There are still situations in which the normal
form that is the result of the full evaluation of the serialized value
can cause more interpretation steps in the future. This is the case

5In reality, the type is a little different, because the function needs access to the
executable’s symbol table to be able to translate descriptors. The function also has an
extra argument for a settings record with which the programmer can for example set
the heap size given to the interpreter. These additional arguments are orthogonal to
the discussion here and are omitted for clarity.
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when the normal form contains closures. If the host curries more
arguments into these nodes, this may trigger a new interpretation
step. In this context, we do not explicitly cause the interpretation
step, so the programmer has no way to choose between deserialize
and safe_deserialize.

The only sensible choice here is to assume that such evaluation
steps must be performed in a safe context as well. Imagine a plu-
gin system where plugins are records of a number of functions
and metadata. The initial deserialization step only evaluates the
metadata but cannot apply the functions yet, while actually these
functions are what must be sandboxed. When the library creates
an unsaturated indirection from the host to the interpreter as the
result of a safe interpretation, this indirection is therefore also safe.
This has the unfortunate consequence that the type of the inter-
preted value changes. If the serialized value was of type (Int, a →
b), the deserialized value will now be of type (MaybeDeserialized
(Int, a → MaybeDeserialized b)). Unfortunately, this means that
programs using sandboxed deserialization may need unsafe type
casts to handle these values later on.

3.4.3 Notes on the implementation. Some faults, like illegal or pro-
hibited instructions, are caught quite easily as an additional in-
struction which exits the interpreter loop. To check for stack over-
flows, a segmentation fault handler is installed, and the C functions
(sig)setjmp/(sig)longjmp to save and restore application state are
used to jump back to the start of interpretation after a fault. The
stack pointers are then reset to their original value, but the heap
pointer remains untouched, because part of the original heap may
now have references to nodes added in the last interpretation step.

Because an interpretation may trigger evaluation in the host
(when the host has shared unevaluated function arguments), which
may in turn trigger new interpretations, there can be a theoretically
endless chain of interpretation steps. This happens, for example,
when applying a lazy, interpreted variant of foldr to native argu-
ments, where the interpreted foldr and the native operator argu-
ment become intertwined on the stack. It is important to distinguish
the different interpretation steps when resetting the application
state in case of a fault. Consider the following example:
x = deserialize "f" (g (deserialize "bad") )

Assume that (deserialize "f") yields a function in the interpreter, that
g is a normal native function, and that (deserialize "bad") results
in a fault in the interpreter. If g handles the fault (for example, by
plugging in a default value in case a fault has occurred), x must
evaluate to a “good” deserialized value. This must be distinguished
from the case that x = deserialize "bad". Hence, the chain of inter-
pretation steps must be reflected in the data structure that is used
to restore the application state. We therefore use a stack of restore
points so that each interpretation step can be recovered from.

However, we also cannot create a restore point for each individ-
ual interpretation step, but only for those which were requested
to catch faults by the programmer (i.e., those that were created for
safe_deserialize, and closures in the results of such safely deseri-
alized values). If nodes are copied from the interpreter to the host
as the argument of a (host) function, these must not be wrapped
in the MaybeDeserialized type, and hence we must not create a
restore point for these values. Should evaluation of these nodes
fail, this will cause the interpretation that required application of

that host function to fail instead, as expected. The purity of the
host function that is called in combination with the strictness of
the safe deserialization step guarantees that the unsafe indirection
created this way cannot appear elsewhere after the overarching
safe interpretation step has finished. In our implementation, we
use one bit in each indirection from the host to the interpreter to
signal whether lazy and seamless or strict and safe interpretation
is to be used for a particular node.

3.5 Type-safe deserialization
Even with the sandbox environment provided by separate heap
and stack spaces and the segmentation fault handler described in
the previous subsection, it turns out to be relatively easy for mali-
cious interpreted expressions to crash the host program. Serialized
expressions contain no information about their type. The type of
the deserialization function is simply (String → a) (or String →
MaybeDeserialized a), so the context in which the deserialization
function is called determines a, the type that the interpreted ex-
pression is assumed to have. Since this information is not available
at runtime, it cannot be checked that the expected type matches
that of the interpreted value when it is copied into the host heap.
In other words, the interpreter may copy an integer into the host
heap, and the host may interpret it as a pointer, etc.

Another issue is that descriptors are matched by looking at sym-
bol names only. Therefore, if the host and the interpreter contain a
constructor with the same name (and from the same module), these
are matched regardless of whether their arity or the types of their
arguments match. This is not only a security concern: the same sit-
uation can occur when the host and the interpreted program share
source code from some common library, but have used different
versions of that library between which types have been changed.

The latter issue can be solved relatively easily by storing more
type information in descriptors. Currently, descriptors contain such
information as their arity and name (to print them), and for nodes
with unboxed values a type string to identify the types of the ar-
guments. However, this type string only distinguishes the various
basic values (integers, booleans, etc.) and node values, which are
boxed; there is no distinction between nodes of different types. If
information about the types of node arguments were added to de-
scriptors, runtime checks could be added to verify type coherence.

This does not solve the first issue yet, since it would still be
possible, for example, to deserialize an integer and use it as a pointer.
To resolve this issue we can use Clean dynamic types on top of
our serialization library. With dynamic types, almost any6 Clean
expression can be packed into an opaque type Dynamic, which
internally consists of the expression and a representation of its
type [1, 2, 23]. Dynamics can be unpacked using a custom pattern
match against types, which internally uses a unification algorithm
to match the expected type against the actual one.

We could thus write a deserialization function with type (String
→MaybeDeserialized Dynamic). For the reasons outlined in sec-
tion 3.4.1, it does not make sense to combine this approach with lazy,
non-sandboxed deserialization. When the expression is in normal
form, it must be checked that (1) the generated graph is well-typed

6Some values, such as files, cannot be packed into dynamics. However, these are
typically also the kind of values for which (de)serialization does not make sense.
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(i.e., conforms to the type specifications of the referenced descrip-
tors), (2) the types of the used descriptors match the types of the
descriptors in the host, and (3) the type of the root node is Dynamic.
If this is the case, the value can be copied safely to the host.

Unfortunately, the types of closures will still change in this setup,
in the same way as described in section 3.4.2. A way around this
would be to not useMaybeDeserialized, but instead define a new
type DeserializationException:
:: DeserializationException

= HeapFull | StackOverflow | IllegalInstruction

The type of the deserialization function now becomes (String →
Dynamic). The dynamic contains either a value of type Deseri-
alizationException, or a value of any other type which has been
correctly deserialized. If the types of the closures are chosen well
and all return a Dynamic, we no longer need to change these types,
so that unsafe type casts can be avoided in the host program. This
advantage outweighs the obvious drawback that in this setup there
is no way to distinguish a faulty interpreted expression from an
interpreted expression that correctly evaluates to a value of type
DeserializationException.

4 INTERWORKING ON THEWEB
The previous section remarked at several stages how symmetrical
the interworking between a native Clean program and our inter-
preter is: it is, essentially, a specific type of distributed system. Rec-
ognizing this, it becomes easy to see that we can also apply a similar
technique in web applications, by plugging in a communication
channel to transmit values back and forth. We use the WebAssem-
bly version of the interpreter currently in iTasks, a task oriented
programming framework for developing web applications [24, 25].

Commonly, web applications use at least two different program-
ming languages: one on the server, and one on the client. This is
because only few languages can be used in web browsers: most
notably JavaScript and WebAssembly [14]. When the server is writ-
ten in another language, the developers need to make sure that the
client-server interface is correct: when one side changes, the other
must as well. Even with standards like JSON this remains tedious.

In iTasks, this problem was solved by Sapl [10]: a minimal func-
tional programming language that can be targeted by the Clean
compiler and compiled to JavaScript. This allowed part of the iTasks
application to be compiled to JavaScript and run in the browser.
Communication was done using generic functions (targeting JSON,
although this is an implementation detail). However, there were
several issues with this approach. First, due to the way Clean was
compiled to Sapl, not all Clean values could be sent to the browser:
they had to be evaluated to a normal form first. Second, because
Sapl branched off relatively early in the compiler toolchain, it was
time-consuming to maintain. Third, the compiled JavaScript had
a bad worst-case performance, in part due to tricks required to
work around the low stack recursion limit in JavaScript engines.
This led programmers to write two versions of some functions: one
optimized for native Clean, and one to be run in JavaScript in the
browser. This is however at odds with the overall goal of the system:
to write the entire application in one source language.

To overcome these issues, the latest version of the iTasks frame-
work now uses our new ABC interpreter in the browser. Because

the ABC language is on a much lower level than Sapl, this simplified
the compiler toolchain significantly. More importantly, the mem-
ory model in the interpreter is the same as that of native Clean,
so it is now straightforward to copy any value from the server
to the client (using the GraphCopy module described earlier). For
the same reason, the performance penalty has become much more
predictable and there is no need for different implementations of
the same function any more.

4.1 Interworking with the iTasks server
Communication between the iTasks server and the interpreted
Clean program running in the browser can be set up in several ways.
The iTasks framework already provides a web socket with which
messages can be passed efficiently without polling the server. It
would hence be possible to apply the same method of interworking
as in the deserialization setting here, with the difference that nodes
would be copied over the network rather than in memory. However,
this would lead to a lot of network traffic due to lazy evaluation of
the result. Furthermore, we are usually not interested in the actual
result of the function that is sent to the client. For instance, it may
only be used to interface with JavaScript to set up part of the user
interface, such as using a third-party JavaScript library to add a
date picker to an input field.

For this reason, the iTasks framework currently only allows send-
ing a limited set of functions to the client: functions of type (JSVal
*JSWorld→ *JSWorld).7 Such a function is executed when an iTasks
component is instantiated. The *JSWorld is an opaque type, realized
internally as a boxed integer but inaccessible to the programmer.
Because all functions in the JavaScript foreign function interface
require a value of *JSWorld, and uniqueness typing ensures that
this value cannot be duplicated, the programmer can enforce the
execution order. The JSVal contains a reference to the underlying
iTasks component, which is a JavaScript object. This value can be
used to set up the initial state of the component, including installing
Clean functions as callbacks for JavaScript events.

In some cases, initialisation of a form field is all that needs to
be done. For instance, when a date field is created, we call a third-
party JavaScript library to initialise a date picker, but the changes
to the value of the input field are communicated with the server
through the core iTasks framework. Other cases are more com-
plex, and do require that we can send a message to the server from
within the WebAssembly interpreter. For instance, in interactive
SVG images [4], both a model and a view of the image is kept. When
an event is handled, these can be changed. Some changes can be
handled entirely locally, while in other cases the changes must be
synchronised with the server. To this end, the iTasks component
has a doEditEvent property: a JavaScript function which is used to
send events to the server. It would be possible to set up lazy com-
munication in this case: we could use the GraphCopy functionality
to copy the graph from the WebAssembly interpreter heap to the
server. However, this imposes a security risk, since the doEditEvent
method can be called by the user of the web application as well,

7Here, the asterisk in *JSWorld indicates that the type is unique: the value may only be
used once [6] (cf. linear types for Haskell [7]). This is the way file I/O and destructive
updates are handled in Clean: through unique types like *File and unique arrays [26,
§9]. Also, recall that Clean function types can have an arity larger than 1. The Clean
type (a b→ c) corresponds to the Haskell type (a→ b→ c).
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who can then evaluate arbitrary code on the server. For this reason,
we currently use JSON encoding to transmit edit events, and hence
require the values to be fully evaluated.

Communication from the server to the client (besides the initial
initialisation step) is also handled through common iTasks function-
ality. In this case, the server sends an attribute change to a specific
iTasks component. The component can have a listener installed
on attribute changes, which is called when this happens. In the
initialisation function of the component, the programmer may thus
set up a Clean function as an attribute change listener. Because
attribute values are simply strings, the programmer is free to use
any encoding. This includes serializing a possibly lazy Clean value
on the server and sending the serialized value to the client. A dedi-
cated function in the JavaScript interface, jsDeserializeGraph, can
be used to deserialize this value into the WebAssembly heap.

4.2 Interworking with JavaScript and the DOM
While the new client runtime integrates much more neatly with
the server, our approach also has some downsides compared to the
previous system. One of the main goals of the integration on the
browser is to make the application interactive. For this, we need
access to the Document Object Model (DOM) of the webpage to
create and remove elements or change their attributes.

In the Sapl setup, Clean programs could contain a dedicated set
of functions which had a hard-coded implementation in JavaScript
and thus allowed calling arbitrary JavaScript functions and han-
dling DOM elements. This was interwoven with the JavaScript code
generated for the actual Clean program. Hence, there was no con-
cept of a foreign function interface between Clean and JavaScript;
in the compiled code, these were identical.

Interaction with the DOM is currently impossible in WebAssem-
bly, so we now need to call JavaScript functions from the Web-
Assembly interpreter to interact with JavaScript objects and the
DOM. Therefore, the current system does include a foreign function
interface, with a small number of traps: dedicated ABC instructions
which bail out to JavaScript to evaluate JavaScript expressions. Be-
cause we do not know in general which functions can be called,
this interface must be general: it is essentially a wrapper around
JavaScript’s Function constructor. Given a string, this constructor
parses it as a JavaScript function body, and returns the correspond-
ing function. Because this is a client-side operation and the string
is controlled by the iTasks application, this does not introduce se-
curity issues. The result of the evaluation of this function is then
passed back to Clean. The string that is sent to JavaScript is immedi-
ately freed from the Clean heap to reduce heap usage. However, the
string must still be built and parsed, so the interface with JavaScript
has become slower in the new setup.

4.3 Impact on garbage collection
Not all JavaScript values can be copied to Clean. When a JavaScript
evaluation results in an object or function, it is stored in a common
array on the JavaScript side and Clean receives a reference to that
array instead. This way, a Clean program can still create JavaScript
objects and call functions on them. It also turns out to be useful to
be able to store an arbitrary Clean value on the JavaScript side. For
instance, a Clean function that is set as a callback for a JavaScript

event may need to access Clean values that are modified from
elsewhere. These references are also stored in an array on the
JavaScript side.

To clean the array of shared JavaScript values up, the Clean
garbage collector keeps track of the references it finds to that array.
After a garbage collection cycle, the array is cleaned up. This is
analogous to cleaning shared host nodes in the deserialization
setting.

The other direction is trickier, because we do not have access to
JavaScript’s garbage collector. Hence there is no way to determine
whether a Clean value referenced from JavaScript must be kept
in memory or not. There is a proposal under consideration for
inclusion in the JavaScript standard (properly termed ECMAScript)
to add finalizers to the language [29]. However, this new feature
will be of little use here (or elsewhere), because finalizers will not
be guaranteed to run after an object is garbage-collected.

We must therefore implement our own small garbage collector
on the JavaScript side as well. We do this by explicitly linking
every Clean value shared with JavaScript explicitly to an iTasks
component. This component can be as small as a single text field
or can be a larger collection of different views. As opposed to
arbitrary JavaScript values and DOM nodes, iTasks components
do have proper finalizers (provided by the iTasks framework). The
components now keep track of the linked Clean values, and remove
them from the shared array when they are destroyed.

To this basic scheme we add one optimisation, which is useful
when components live so long that we cannot wait for them to
be destroyed: when the Clean program sets a JavaScript variable
to some value, it is first checked whether the variable contained a
reference to Clean. If this is the case, the reference is freed directly.
This is useful in situations where the same variable is continuously
updated with new Clean values.

However, in some cases, even this is not enough. In a library
used to create interactive SVG images [4], for every update of the
SVG image new Clean functions could be attached to DOM nodes
as event callbacks. Because these are not overwritten with a new
value but simply disappear from the DOM, the previously described
optimisation does not target this case. Currently, the only solution
in this case is to keep track of the installed callbacks in the SVG
library itself and remove them when the corresponding object has
been removed.

A current proposal to add garbage collector integration to Web-
Assembly [27] may allow us to implement parts of the JavaScript
interface in a neater way, but it is not yet advanced enough to
determine whether it will be helpful here or not.

4.4 The JavaScript foreign function interface
To illustrate the above, this section describes the foreign function
interface that can be used to access the JavaScript world from Clean.
Other than the interworking described in section 3, this is a proper
foreign function interface where copying of values has to be explicit.
This is necessary because the execution models of JavaScript and
Clean are too different.

A representative excerpt of the interface is given in Figure 3.
The server-side iTasks application contains code using this foreign
function interface, which is sent to the browser as described in
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:: ∗JSWorld
:: JSVal

:: JSFun :== JSVal

(.?) infixl 1 !JSVal !∗JSWorld → (!JSVal, !∗JSWorld)

jsValToInt :: !JSVal → Maybe Int / / and similar for other types
jsIsUndefined :: !JSVal → Bool / / check for JS value ‘undefined’

class (.#) infixl 3 attr :: !JSVal !attr → JSVal

instance .# String, Int

generic gToJS a :: !a → JSVal

derive gToJS Int, Bool, String, JSVal / / etc.

(.=) infixl 1 !JSVal !a !∗JSWorld → ∗JSWorld | gToJS{|* |} a

class toJSArgs a :: !a → {!JSVal}
instance toJSArgs Int, Bool, String, JSVal, ( ) / / etc.
instance toJSArgs (a ,b) | gToJS{|* |} a & gToJS{|* |} b / / and for (a,b,c), etc.

(.$) infixl 2 :: !JSFun !a !∗JSWorld → (!JSVal, !∗JSWorld) | toJSArgs a

(.$!) infixl 2 :: !JSFun !a !∗JSWorld → ∗JSWorld | toJSArgs a

jsGlobal :: !String → JSVal

jsNew :: !String !a !∗JSWorld → (!JSVal, !∗JSWorld) | toJSArgs a

addJSFromURL :: !String !(Maybe JSFun) !∗JSWorld → ∗JSWorld

jsMakeCleanReference :: a !JSVal !∗JSWorld → (!JSVal, !∗JSWorld)
jsGetCleanReference :: !JSVal !∗JSWorld → (!Maybe a , !∗JSWorld)
jsFreeCleanReference :: !JSVal !∗JSWorld → ∗JSWorld

jsWrapFun :: !( {!JSVal} ∗JSWorld → ∗JSWorld) !JSVal !∗JSWorld
→ (!JSFun, !∗JSWorld)

jsDeserializeGraph :: !String !∗JSWorld → (!a, !∗JSWorld)

Figure 3: The JavaScript foreign function interface.

section 4.1. The programmer is responsible for making sure this
interface is only used on the client-side, as it uses trap instructions
which are not defined in the native Clean runtime system. This is
trivial, because the JSWorld can only be obtained on the client-side
since it is provided by the supporting JavaScript code.

As can be seen, JSVal is an opaque type. Internally, it is an alge-
braic data type representing different kinds of JavaScript expres-
sions, including references to the arrays of shared JavaScript and
Clean values. The JSFun synonym type is merely provided to im-
prove readability in function types.

To evaluate a Clean expression, the .? operator can be used. Note
that the use of *JSWorld here and elsewhere enforces evaluation
order, as has been mentioned above. Because not all JavaScript
values can be copied to Clean, the result of this function is still a
JSVal. Other functions, like jsValToInt and jsIsUndefined, can be
used to move the result into the Clean world.

The .# class is used to get properties of JavaScript objects. For
instance, obj .# "key" corresponds to the JavaScript expression
obj["key"], while obj .# 0 corresponds to the expression obj[0].

The generic function gToJS converts Clean values to JavaScript
values. This is possible for basic types and records (for which
JavaScript objects are created), but not for algebraic data types,

which have no direct equivalent in JavaScript. The .= operator sets
a certain JavaScript reference to some value using gToJS.

To call JavaScript functions, the .$ and .$! operators can be used,
the difference being only that the first returns the result. The type
of the arguments of the JavaScript function must instantiate the
toJSArgs class. This class is essentially the same as the generic
function gToJS, with the exception that it allows the void type () for
function applications without arguments, and tuples of convertible
types for functions with more than one argument.

To use global JavaScript objects (e.g., window or document),
jsGlobal can be used. Similarly one can use jsNew to create new
JavaScript objects with the new keyword. It is also possible to
load external JavaScript files using addJSFromURL. The second
argument to this function is an optional callback, which will be
executed after the file has loaded. This is for example used in iTasks
to load the external Pikaday library for date pickers [9], after which
jsNew "Pikaday" (. . . ) is used to initialize the input field.

The functions jsMakeCleanReference and jsGetCleanReference
are used to store and retrieve references to Clean values in the
JavaScript world. The second argument to jsMakeCleanReference
must be an iTasks component. This component is used for garbage
collection, as explained above: the shared Clean value is kept in
memory as long as the iTasks component exists. Alternatively, one
may use jsFreeCleanReference to free the value earlier.

To install Clean functions as callbacks for JavaScript events,
jsWrapFun is used. This is nothing more than a wrapper around
jsMakeCleanReference, so this function also has a JSVal argument
which must be a reference to an iTasks component and is used for
garbage collection. Once called, the function arguments are passed
as a single array of JSVal values. This is needed because JavaScript
functions can be called with any number of arguments.

Finally, jsDeserializeGraph is the WebAssembly version of the
graph unpacking function in GraphCopy. It is provided so that the
iTasks server can send lazy serialized expressions to the client.

5 BENCHMARKS
We have benchmarked the different implementations of the inter-
preter and compared its performance against that of native Clean
and Sapl. The results are in Table 1, with time relative to native
Clean plotted in Figure 4. The benchmarks come from a standard
set of small programs,8 for easy comparison with more minimal
runtime systems, and some somewhat larger programs from [15]9
to more accurately estimate performance in real use cases. Addi-
tionally, we have benchmarked a real-world program, namely the
Cloogle search engine [28].10

The runtimes benchmarked are: native Clean; the C interpreter
with direct threaded code (compiled with gcc 6.3 and -Ofast -fno-
unsafe-math-optimizations); the C interpreter with a giant switch

8The benchmarks are implemented as follows: nfib naively computes the 43rd Fibonacci
number, adding 1 for each function call; tak computes 𝜏 (36, 24, 12) , where 𝜏 is the
Takeuchi function; lqueen solves the N-queens problem for a 13 × 13 chess board;
reverse reverses a list of 30,000 elements 30,000 times; fsieve computes the 10,000th
prime number using the sieve of Eratosthenes 200 times.
9complab is an image processing program; event simulates 1,500,000 transitions in a
flip-flop; ida is an implementation of the Iterative Deepening A* algorithm; sched is a
job scheduler; parstof is a parser; transform performs an AST transformation.
10The implementation of the benchmark can be found on https://gitlab.science.ru.nl/
cloogle/benchmark.

https://gitlab.science.ru.nl/cloogle/benchmark
https://gitlab.science.ru.nl/cloogle/benchmark
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Figure 4: Performance of the ABC interpreter and Sapl, relative to native Clean (lower is better).

Benchmark Native Clean C (direct threaded) C (giant switch) WebAssembly Sapl
nfib 43 2.38 14.08 23.36 31.56 4.47
tak 36 24 12 5.77 34.26 62.76 86.87 13.32
lqueen 13 2.26 8.11 13.26 21.47 69.62
reverse 30,000 4.05 7.28 10.96 15.60 61.23
200× fsieve 10,000 1.53 2.85 3.78 5.68 4.43
30× complab 2.44 5.15 7.38 24.27 ★
10× event 1.62 4.21 6.08 19.99 ★
10× ida 3.13 7.64 12.16 39.81 108.8
1,000× parstof 1.80 6.30 8.79 31.68 ★
sched 1.08 3.16 4.24 12.74 36.85
3,000× transform 0.86 3.00 4.17 13.82 42.05
cloogle 181.5 605.4 722.9 1900 ★

Table 1: Wall-clock time in seconds for native Clean, the ABC interpreter, and Sapl.

(idem); the WebAssembly interpreter (in SpiderMonkey 68.0); Sapl
(idem). The benchmarks were run on an i7-5500U processor at
2.4GHz. Native Clean and the ABC interpreter received 200MB of
heap for each program. Because Sapl uses JavaScript expressions
to emulate the Clean graph, we cannot easily limit the heap size in
this setup. A number of benchmarks failed to run with Sapl, for a
variety of reasons (stack depth limits; run-time exceptions; lack of
support for unique array selections). The lqueen benchmark was
adapted to solve a smaller problem (on a 12 × 12 chess board); the
results were then scaled accordingly. The other failing benchmarks
are indicated with a star: “★”. Lastly, the reader should keep in mind
that the native Clean compiler generates highly performant code.

As can be expected, programs that rely heavily on the heap
(such as reverse) have a much smaller performance penalty than
those that use more basic values on the stack (such as nfib and tak).
This is because the former programs spend more time in garbage
collection, which is nearly as fast as in native Clean, and because
the latter are overall simpler programs, with smaller instructions
and hence a larger dispatch overhead in the interpreter.

On most practical benchmarks for which Sapl does not crash,
the WebAssembly interpreter is faster by a factor of around 3. Only

simple programs that deal with a lot of basic values (like nfib, tak
and fsieve) clearly benefit from the fact that the Sapl code is just-in-
time compiled instead of interpreted. However, because JavaScript
has a small recursion limit, much too small to implement a func-
tional programming language, Sapl uses continuation passing style
(i.e., “trampolined code”), causing an overhead even on these small
programs. Sapl’s performance costs become much clearer for larger
programs which use heap structures. To achieve lazy evaluation,
Sapl represents thunks and head normal forms as JavaScript arrays,
which are evaluated using a central “trampoline” function. How
efficient that is, is difficult to predict, as is reflected in the wide
range of performance penalties compared to native Clean, between
15 times slower on the reverse benchmark and 49 times slower on
transform. Because the ABC interpreter remains much closer to
the native Clean runtime environment, its overhead is much more
predictable (taking into account the fact that it is faster when a
program requires more garbage collection, as mentioned above).

The difference between the native interpreter (with a giant
switch) and the WebAssembly interpreter is higher than expected,
sinceWebAssembly is expected to have near-native performance [14,
p. 197]. Looking at different JavaScript engines does not help much:
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Google’s V8 engine (version 7.3), for instance, is about 30% slower
on our interpreter thanMozilla’s SpiderMonkey (68.0). Upon inspec-
tion of the code generated by the just-in-time compiler, this turns
out to be a register allocator issue, due to which SpiderMonkey’s
register allocator performs particularly bad on large interpreter
loops like ours.11 The Clean program counter and heap and stack
pointers are therefore continuously stored and reloaded from the
WebAssembly stack. To work around this issue, we currently use
global variables instead of locals to keep this state of the interpreter,
which causes the variables to be stored in memory rather than on
the stack and thus reduces the number of spills needed. This is about
40% faster on our benchmarks (included in the results presented
above). However, a proper solution would be to store the pointers
in registers without spilling them to the stack. The difference also
varies more than one would expect — at the moment it is unclear
why. Unfortunately, it is difficult to investigate this issue without
first fixing the aforementioned problem with the register allocator.

Using Emscripten [32] it would have been possible to compile
the C version of the ABC interpreter to WebAssembly, instead of
creating a separate WebAssembly version. However, initial tests
showed that this approach would be rather slow, this WebAssembly
interpreter being around seven times slower than the C version,
i.e., between 10 and 70 times slower than native Clean. Similar,
though not quite as bad, results were obtained in other projects [30].
Generating the WebAssembly interpreter ourselves furthermore
keeps our toolchain lightweight and gives more freedom to improve
the generated WebAssembly with domain knowledge.

We do not provide benchmarks for the node copying overhead
(in the deserialization setting) or the JavaScript interface (in the
browser context) here, because we have not yet encountered re-
alistic programs that spend a significant amount of time on these
steps. The serialization library has been tested with the Soccer-Fun
project [3] in which a soccer match is simulated. In our setup, the
AIs of the players were interpreted and the gameplay was handled
natively. Even though there is a lot of communication to make
AIs aware of the state of the game, the copying of nodes back and
forth was negligible in comparison to the time spent to calculate
the next move, even with simple AIs. In the browser setting, we
have tested the JavaScript interface with the interactive SVG editors
described in [4]. Here too, only little time is spent in the interface,
and most time is spent in the browser’s rendering engine and the
actual computations done inside the interpreter.

6 RELATEDWORK
The ABC machine which our interpreter simulates was originally
described by Koopman [19]. Since then, many additions and im-
provements have been made, most of which are not documented in
the literature. Also a comprehensive description of the current na-
tive runtime system used by Clean remains a desideratum, although
earlier versions have been described [31].

Asmentioned above, our serialization library is awrapper around
the GraphCopy library, which was briefly described by Oortgiese
et al. [20]. It is similar to solutions in other languages (see e.g. [8]
for Haskell); Epstein et al. [12] use a different, class-based approach.
While these solutions facilitate sharing of lazy expressions between

11https://bugzilla.mozilla.org/show_bug.cgi?id=1167445.

executables containing the same code on different platforms, there
have also been projects to allow the sharing of unknown code on
the same platform. An example of this is Clean’s dynamics system,
which on 32-bit Windows systems can write and read values of
type Dynamic to and from the disk [22]. The relevant object code
is stored centrally and linked dynamically by what we called here
the host program. Pil [22, p. 244] already anticipated the goal of
sharing these dynamic values between different platforms, but
noted: “We would like to stress here that we are only interested
in efficient solutions. [. . . ] The representation of a function by
its source code, which can be interpreted at run-time, is not a
satisfactory solution.” Clearly, our knowledge of interpreters as well
as processor speed has improved since 1997, and at least for some
applications, interpretation has now become a feasible strategy —
especially because in some contexts, like the web, remain unsuitable
targets for the compilation of functional languages.

Du Bois and Da Rocha Costa [11] experimented with a small
functional language that compiles to the JVM and uses Java remote
method invocation to parallelise execution over several virtual
machines. In this setup, as in ours, nodes in the distributed system
can execute code it has not seen before. However, this comes at the
cost of all code being interpreted or just-in-time compiled; there is
no interworking of compiled and interpreted code.

In Erlang, compiled and interpreted code do work together. Code
can at runtime be replaced by newer versions to fix bugs [5, pp. 78–
80].While originally Erlang was run in a virtual machine, it can now
be just-in-time compiled as well [21]. In this setup, the compiled
and the interpreted code work together on the same heap and stack.
This clearly avoids the node copying overhead of our serialization
library, but is less tailored to sandboxed execution.

In the iTasks framework [24, 25], our work has replaced that of
Domoszlai et al. [10] as a method to bring Clean code to the browser
and have a native Clean server communicate with the simulated
Clean program on the client. In the previous setup, Clean was com-
piled to the minimal functional programming language Sapl [17],
which was then compiled to JavaScript. The previous setup was
faster on small benchmarks because the overhead of interpretation
weighs heavier in this case. For larger programs, interpretation on
a lower level (i.e., ABC instead of Clean or Sapl) turns out to be
preferable. This also simplified communication between the server
and the client. Due to limitations of WebAssembly, the interface
with JavaScript has become slower than in the previous setting, but
this difference has not been recognizable in actual usage.

7 CONCLUSIONS
We began our paper with the statement that functional languages
are theoretically ideally suited for the execution of code unknown
at compile-time: because functions are first-class citizens, this is just
a special case of deserialization. We then described the implemen-
tation of a serialization library which supports this feature, to the
best of our knowledge the first to do so in a platform-independent
way. Internally, our library relies on an interpreter for Clean’s inter-
mediate language ABC, and copies nodes back and forth between
the native and the interpreter heaps. This setup works well, and
in the practical applications tested the overhead of copying nodes
was not felt to be a major drawback.

https://bugzilla.mozilla.org/show_bug.cgi?id=1167445
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We have described the impact on garbage collection and high-
lighted parallels with distributed systems that can aid implementers
of similar systems. Since we rely on only one special feature of
Clean’s native runtime system, our implementation can be an exam-
ple for similar libraries in other functional programming languages.

Unfortunately we have not been able to reconcile our two aims
of getting the interpreter to interwork lazily and seamlessly with
the host on the one hand, and evaluate serialized expressions safely
on the other. Exception propagation, as supported by the GHC
runtime system for Haskell, may be able to resolve this issue.

As outlined above, our sandboxed interpretation scheme is cur-
rently not entirely safe yet. We have described methods that can
be used to ensure type coherence. In conjunction with dynamic
typing, our serialization library would then become type-safe.

Lastly, we have shown that an interpreter for the stack-based
intermediate language ABC is a suitable way to bring functional
programming to the browser. Browser languages currently are a
sub-ideal compilation target for functional languages due to the
lack of recursion depth and non-local goto’s. We have seen that
the performance of our interpreter is more predictable and in most
cases better than other solutionswhichwork around this issue using
continuation-passing style. Nevertheless, we intend to investigate
whether a synthesis of these approaches is useful to further improve
performance, for example by only using the interpreter in parts of
the program where deep recursion or non-local goto’s are required.
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